课题:牛顿定律解决问题(五)
执教时间 审核
课时安排: 课时 总第 课时
【学习目标】
1.进一步熟练掌握应用牛顿运动定律解决问题的方法和步骤.
2.培养学生的分析推理能力.
【重难点】
熟练应用牛顿运动定律解决问题
【自主学习】
三、物体的瞬时状态
1.在动力学问题中,物体受力情况在某些时候会发生突变,根据牛顿第二定律的瞬时性,物体受力发生突变时,物体的加速度也会发生突变,突变时刻物体的状态称为瞬时状态,动力学中常常需要对瞬时状态的加速度进行分析求解。
2.在应用牛顿运动定律解题时,经常会遇到绳、杆、弹簧和橡皮条(绳)这些力学中常见的模型。全面、准确地理解它们的特点,可帮助我们灵活、正确地分析问题。
共同点
(1)都是质量可略去不计的理想化模型。
(2)都会发生形变而产生弹力。
(3)同一时刻内部弹力处处相同,且与运动状态无关。
不同点
(1)绳(或线):只能产生拉力,且方向一定沿着绳子背离受力物体;不能承受压力;认为绳子不可伸长,即无论绳所受拉力多大,长度不变。绳的弹力可以突变:瞬间产生,瞬间消失。
(2)杆:既可承受拉力,又可承受压力;施力或受力方向不一定沿着杆的轴向。
(3)弹簧:既可承受拉力,又可承受压力,力的方向沿弹簧的轴线。受力后发生较大形变;弹簧的长度既可以变长(比原来长度大),又可以变短。其弹力F与形变量(较之原长伸长或缩短的长度)x的关系遵守胡克定律F=kx(k为弹簧的劲度系数)。弹力不能突变(因形变量较大,产生形变或使形变消失都有一个过程),故在极短时间内可认为形变量和弹力不变。当弹簧被剪断时,其所受弹力立即消失。
(4)橡皮条(绳):只能受拉力,不能承受压力(因能弯曲)。其长度只能变长(拉伸)不能变短.受力后会发生较大形变(伸长),其所受弹力F与其伸长量x的关系遵从胡克定律F=kx。弹力不能突变,在极短时间内可认为形变量和弹力不变。当被剪断时,弹力立即消失。
1.一轻弹簧上端固定,下端挂一重物,平衡时弹簧伸长了4cm,再将重物向下拉lcm,然后放手,则在刚释放的瞬间重物的加速度是(g=l0m/s2) ( )
A.2.5 m/s2 B.7.5 m/s2
C.10 m/s2 D.12.5 m/s2
2.如图所示,质量相等的两个物体A、B之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多少?
3.如图(a)所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态。现将L2线剪断,求剪断瞬时物体的加速度。
若将图 (a)中的细线L1改为长度相同、质量不计的轻弹簧,如图(b)所示,其他条件不变,求剪断L2瞬时物体的加速度。
总结:1、钢性绳(或接触面):认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要形变恢复时间,一般题目中所给细线和接触面在不加特殊说明时,均可按此模型处理。
2、弹簧(或橡皮绳):此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变。
四、其他常见问题
4.如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg.(g=10m/s2,sin37°=0.6,cos37°=0.8)
(1)求车厢运动的加速度并说明车厢的运动情况.
(2)求悬线对球的拉力.
5.如图所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断中,正确的是( )
(A)小车静止时,F=mgcosθ方向沿斜杆向上
(B)小车静止时,F=mgcosθ方向垂直斜杆向上
(C)小车向右以加速度a运动时,
(D)小车向左以加速度a运动时, ,方向斜向左上方,与竖直方向的夹角为
答案:D
6.如图7质量为m 的木块放在倾角为θ的光滑斜面上,当斜面沿水平方向向左做匀加速运动而木块与斜面保持静止时( )
A.木块所受的弹力大小为mg/cosθ
B.木块所受的弹力大小为mgcosθ
C.木块的加速度为gtanθ
D.木块的加速度为gsinθ
7.如图所示,升降机以加速度a加速下降,升降机内有一倾角为α的粗糙斜面,质量为m的物体与斜面相对静止,则斜面对物体的支持力大小为 ( )
A.m(g-a)cosθ. B.mgcosθ.
C.m(g+a)cosθ. D.mgcosθ+masinθ.
8.如图所示,放在光滑水平桌面上的物体m2,通过穿过定滑轮的绳和吊在桌面上的物体m1相连.释放后系统加速度的大小为a1.如果取走m1,用大小等于m1所受重力的力F向下拉绳,m2的加速度为a2.则(不计滑轮摩擦及绳的质量) ( )
A.a1=a2 B.a1<a2 C.a1>a2 D.a2 = a1/2
①m1拉m2时,分别隔离分析m1和m2,它们有共同的什么量(大小)?
②绳子的拉力T= m1g吗?
③m1在下降时,m1是超重还是失重?m2呢?
④若用F=m1g拉m2,m2的加速度如何求?
9.如图所示,质量为m的人站在自动扶梯上,扶梯正以加速度a向上减速运动,a与水平方向的夹角为θ。求人受的支持力和摩擦力。
【关闭】